The Lewis structure of SF6 contains six single bonds, with sulfur in the center, and six fluorines on either side. There are three lone pairs on each fluorine atom, and the sulfur atom does not have any lone pair.
Steps
By using the following steps, you can easily draw the Lewis structure of SF6:
#1 Draw skeleton
#2 Show chemical bond
#3 Mark lone pairs
#4 Calculate formal charge and check stability (if octet is already completed on central atom)
Let’s one by one discuss each step in detail.
#1 Draw skeleton
In this step, first calculate the total number of valence electrons. And then, decide the central atom.
- Let’s calculate the total number of valence electrons
We know that… sulfur is a group 16 element and fluorine is a group 17 element. Hence, sulfur has six valence electrons and fluorine has seven valence electrons.
Now SF6 has one sulfur atom and six fluorine atoms.
So the total number of valence electrons = valence electrons of sulfur atom + (valence electrons of fluorine atom × 6)
Therefore, the total number of valence electrons = 6 + 36 = 42
- Now decide the central atom
The atom with the least electronegative value is placed at the center. By looking at the periodic table, we get the electronegativity values for sulfur and fluorine as follows:
Electronegativity value of sulfur = 2.58
Electronegativity value of fluorine = 3.98
Obviously, sulfur is less electronegative than fluorine. Hence, assume that sulfur is the central atom.
So now, put sulfur in the center and fluorines on either side. And draw the rough skeleton structure for the Lewis structure of SF6 something like this:
Also read: How to draw Lewis structure of CH3OH (4 steps)
#2 Show chemical bond
Place two electrons between the atoms to show a chemical bond. Since sulfur is surrounded by six fluorines, use twelve electrons to show six chemical bonds as follows:
Also read: How to draw Lewis structure of PH3 (4 steps)
#3 Mark lone pairs
As calculated earlier, we have a total of 42 valence electrons. And in the above structure, we have already used twelve valence electrons. Hence, thirty valence electrons are remaining.
Two valence electrons represent one lone pair. So thirty valence electrons = fifteen lone pairs.
Note that sulfur is a period 3 element, so it can keep more than 8 electrons in its last shell. And fluorine is a period 2 element, so it can not keep more than 8 electrons in its last shell.
Also, make sure that you start marking these lone pairs on outside atoms first. And then, on the central atom.
The outside atoms are fluorines, so each fluorine will get three lone pairs. And the central atom (sulfur) will not get any lone pair, because all fifteen lone pairs are used.
So the Lewis structure of SF6 looks something like this:
In the above structure, you can see that the octet is completed on the central atom (sulfur), and also on the outside atoms. Therefore, the octet rule is satisfied.
After completing the octet, one last thing we need to do is, calculate the formal charge and check the stability of the above structure.
Also read: How to draw Lewis structure of XeF2 (4 steps)
#4 Calculate formal charge and check stability
The following formula is used to calculate the formal charges on atoms:
Formal charge = valence electrons – nonbonding electrons – ½ bonding electrons
Collect the data from the above structure and then, write it down below as follows:
- For sulfur atom
Valence electrons = 6
Nonbonding electrons = 0
Bonding electrons = 12
Formal charge = 6 – 0 – ½ (12) = 0
- For each fluorine atom
Valence electrons = 7
Nonbonding electrons = 6
Bonding electrons = 2
Formal charge = 7 – 6 – ½ (2) = 0
Mention the formal charges of atoms on the structure. So the Lewis structure of SF6 looks something like this:
In the above structure, you can see that the formal charges of both (sulfur and fluorine) are zero. Therefore, this is the stable Lewis structure of SF6.
And each horizontal line drawn in the above structure represents a pair of bonding valence electrons.
Related
- Lewis structure of CH3OH
- Lewis structure of PH3
- Lewis structure of XeF2
- Lewis structure of N2O
- Lewis structure of I3–
External links
- Drawing the Lewis Structure for SF6 – The University of Maryland
- SF6 (Sulfur hexafluoride) Lewis Structure – Chemistry School
- SF6 Lewis Structure in 5 Steps (With Images) – Pediabay
- SF6 Lewis structure, Molecular geometry, Bond angle, hybridization – Topblogtenz
- SF6 Molecular Geometry, Lewis Structure, Shape, and Polarity – Geometry of Molecules
- SF6 Lewis Structure, Molecular Geometry, Hybridization, and MO Diagram – Techiescientist
- Lewis structure of SF6 – AceOrganicChem
- Sulfur Hexafluoride, SF6 Molecular Geometry & Polarity – Tutor-Homework.com
- Lewis Dot of Sulfur Hexafluoride SF6 – Kent’s Chemistry
- What is the Lewis dot structure for SF6? – Homework.Study.com
- Chemical Bonding: SF6 Lewis Structure – The Geoexchange
- In the Lewis structure for SF6 the central sulfur atom shares ___ electrons – Studocu
- What is the structure of SF6? – Quora
- Sulfur Hexafluoride| Formula and Molecular Geometry – What’s Insight
- SF6 Lewis Structure (Sulfur Hexafluoride) – Pinterest
- Draw the Lewis structure of SF6 – Numerade
- Draw the Lewis structure for the sulfur hexafluoride (SF6) molecule – OneClass
- Draw the lewis structure for SF6 – Assignment Studio
- Draw Lewis dot (electron) structure for SF6 – Course Hero
- Draw The Lewis Structure For SF6 – Chegg
- What is the Lewis structure of SF6 – Quizlet
Deep
Rootmemory.com was founded by Deep Rana, who is a mechanical engineer by profession and a blogger by passion. He has a good conceptual knowledge on different educational topics and he provides the same on this website. He loves to learn something new everyday and believes that the best utilization of free time is developing a new skill.